Riemannian Drums, Anisotropic Curve Evolution and Segmentation

نویسنده

  • Jayant Shah
چکیده

The method of curve evolution is a popular method for recovering shape boundaries. However isotropic metrics have always been used to induce the flow of the curve and potential steady states tend to be difficult to determine numerically, especially in noisy or low-contrast situations. Initial curves shrink past the steady state and soon vanish. In this paper, anisotropic metrics are considered to remedy the situation by taking the orientation of the feature gradient into account. The problem of shape recovery or segmentation is formulated as the problem of finding minimum cuts of a Riemannian manifold. Approximate methods, namely anisotropic geodesic flows and solution of an eigenvalue problem are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Segmentation as a Riemannian Drum Problem

In this paper, the segmentation problem is formulated as a problem of segmenting a Riemannian manifold. The image domain is endowed with an anisotropic metric and its segmentation is obtained by thresholding the second eigenvector of the Laplace-Beltrami operator on the Riemannian manifold so defined. The formulation is an analytic analog of a recently proposed approach to segmentation based on...

متن کامل

Riemannian Mean Curvature Flow

In this paper we explicitly derive a level set formulation for mean curvature flow in a Riemannian metric space. This extends the traditional geodesic active contour framework which is based on conformal flows. Curve evolution for image segmentation can be posed as a Riemannian evolution process where the induced metric is related to the local structure tensor. Examples on both synthetic and re...

متن کامل

Anisotropic Haralick Edge Detection Scheme with Application to Vessel Segmentation

In this paper, detection of edges in oriented fields is addressed. Haralick edge detection is an accurate scheme for estimation of the edge in a Euclidean space. However, in some applications such as edge detection for vessel segmentation because of the intrinsic orientation of structures, accuracy is only demanded in a particular subspace. This is specially usefull when a curve evolution is ch...

متن کامل

Riemannian Manifolds for Brain Extraction on Multi-modal Resonance Magnetic Images

In this paper, we present an application of Riemannian geometry for processing non-Euclidean image data. We consider the image as residing in a Riemannian manifold, for developing a new method to brain edge detection and brain extraction. Automating this process is a challenge due to the high diversity in appearance brain tissue, among different patients and sequences. The main contribution, in...

متن کامل

Edgeflow-driven Variational Image Segmentation: Theory and Performance Evaluation

We introduce robust variational segmentation techniques that are driven by an Edgeflow vector field. Variational image segmentation has been widely used during the past ten years. While there is a rich theory of these techniques in the literature, a detailed performance analysis on real natural images is needed to compare the various methods proposed. In this context, this paper makes the follo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999